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SW7 2BZ, UK 

Received 27 January 1989 

Abstract. An attempt is made to crystallise the meaning of the maximum entropy state, 
when a system is subject to constraints which carry random uncertainties. Such a state is 
well defined, and there exists a simple statistic which allows it to be determined unam- 
biguously, provided it is assumed that one’s state of knowledge of the system fluctuates 
in close resemblance to the quantum uncertainty principle. Without loss of generality, the 
senario is verified, for a variety of error-carrying constraints, by results from a large number 
of ‘random die samples’. 

Maximum entropy has been proposed as the only logically consistent method of 
inference, when available knowledge is insufficient (Jaynes 1957). Traditionally, such 
knowledge takes the form of some constraints, which are well defined, but which do 
not permit a complete specification of the system. For this class of problems the 
standard way of arriving at the maximum entropy solution, subject to the given 
constraints, is the Lagrange method of undetermined multipliers. However, modern 
developments in the fields of data analysis, quantum mechanics and statistical 
mechanics render it more customary to have information on all the variables of the 
system in question, although the ‘insufficiency’ arises because such information is 
derived from experimental conditions which are inevitably subject to fluctuationst. 

The problem of finding the maximum entropy estimate in the presence of poorly 
defined constraints has been a matter of controversy for some time. A number of 
prominent researchers in the field (Burch er a1 1983, Jaynes 1984) have agreed that 
the correct statistic to extremise is S - AX’, but the difficulty is in finding the appropriate 
value of A (Lieu et a1 1987a). Here we attempt to demonstrate that, in the majority 
of circumstances, A assumes a unique value, which can be determined by a re- 
examination of the underlying axioms of maximum entropy theory. 

Consider first the common problem of estimating a distribution of relative propor- 
tions (or probabilities) { p i ,  i = 1,2, .  . . , r}; Zp, = 1, subject to some prior knowledge 
{pi f a,, i = 1,2,. . . , 1-1, where {pi} are the constraints and {ui} are their associated 
random errors (not necessarily Gaussian). The rationale of maximum entropy then 
proceeds as follows. Imagine that there are many possible ‘versions’ of the distribution, 

t See Erickson and Smith (1988). The following common physical situations serve to illustrate: (1) electronic 
gain fluctuations randomly shift the pixel positions of a microchannel plate, resistive anode photon detector; 
(2) during long spectroscopic observation of an astrophysical plasma, interim departures from thermal 
equilibrium cause variations in the relative population of each atomic level, according to the instantaneous 
mean temperature. 
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each produced by randomly throwing a large number of counts N into the r channels, 
and working out pi = n i /  N,  i = 1,2 , .  , . , r. The likelihood of forming a particular 
distribution {pi, i = 1 ,2 , .  . . , r} depends on the product of two quantities: ( i )  the number 
of distinct ‘versions’ which lead to this distribution; (ii) the probability of complying 
with the constraints when errors are taken into account. The essential mathematical 
factor for ( i )  is well known, namely exp(NS), where 

The expression for (ii) is more subtle. It is not, as has been suggested (Jaynes 1984), 
proportional to exp( - x 2 ) ,  where 

r 

x 2  = 1 (pi - p i ) 2 / 2 a 5  
i = l  

for the following reasons. Quite apart from the fact that the experimental errors may 
not be Gaussian distributed, the final product exp( NS - x 2 )  is infinitely biased towards 
the entropy function, and thus renders the constraints obsolete. 

In order to arrive at the correct factor for (ii), it must be realised that, when forming 
a version of the distribution, each random event of the N counts is a fictitious 
measurement (or probing) of the distribution. Such fictitious measurements cannot 
lead to a reduction in the error of the actual experiment. Therefore, we must introduce 
a likelihood function for the conceptual experiment, through which the probabilities 
{pi} at each repitition are allowed to fluctuate in a random way as governed by our 
state of knowledge. Such an undertaking distinguishes the present work from previous 
works by other authors. Although reminiscent of the quantum uncertainty principle, 
it is the only way to avoid absurd logical consequences. 

The remaining argument is quite simple. If we are prepared to accept this new 
ground rule, then there will be N trial measurements performed on a system of r 
fluctuating probability variables {pi = pi f ui, i = 1,2,  . . . , r}. Each individual variable 
will formally be measured N / r  times, and the mean will be distributed around pi like 
a Gaussian, with standard deviation ai( r /  N)”* ,  irrespective of the error distribution 
in the original constraint. The probability of agreement between the constraints and 
the distribution is proportional to exp( - Nx2/  r ) ,  where x 2  is given by (2). Assembling 
now the two factors (i) and (ii), mentioned prior to equation (2), it is found that the 
overall probability of forming a particular distribution is proportional to exp[ N (  S - 
x2 /  r ) ] .  The most likely distribution is then obtained by maximising S - x 2 /  r, subject 
to the constraint Xp, = 1. Note that the relative scaling between S and x2 is now 
independent of N, as it should be. 

Previous works on this problem (see Lieu (1988) and Lieu et a1 (1987b)) have 
erroneously arrived at the statistic S-x’ (i.e. r = 1). Although the experimental 
uncertainties were handled in exactly the same spirit there, the number of ‘measure- 
ments’ on each pi was assumed to be N, instead of the correct value N / r .  

So far the discussion has been concerned with constraints on the individual prob- 
abilities. However, the same reasoning can be applied to any number of constraints, 
each involving any combination of the probabilities, provided that (i) the constraints 
deal with mutually exclusive sets of probabilities and (ii) the total number of constraints 
does not exceed r, the degrees of freedom of the system. The following illustrative 
examples, all of which concern the familiar ‘loaded die’, will serve to clarify these 
concepts, without loss of generality. 
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The first problem is one of estimating the probabilities of the individual faces of 
a normal six-sided die, given a constraint on the mean 

6 r= C ip,. (3)  
, = I  

If r is known precisely to be 4.5, the maximum entropy estimate of the p ,  can be 
obtained via the method of Lagrange multipliers. The result is shown in the right-hand 
column of table l (a) .  If ;is known to within a margin of random error u (the standard 
deviation), the maximum entropy estimate of the pI would accordingly be obtained by 
maximising S - x’/ r, subject to Xp, = 1, where 

6 

s= c -PIlogPl x2= ( T - 4 . 5 ) 2 / 2 ~ 2  (4) 
1=1 

and r = 6. Note that this x 2  is not the same as that given in (2), because the available 
information here involves the single data value < and not the six individual probabilities. 
The resultant estimated distribution, for two values of U, are shown in the right-hand 
columns of table l ( b )  and l ( c ) .  

Table 1. This six probabilities of the typical loaded die, subject to the constraint that the 
mean r = I i p ,  must lie within a certain interval: ( a )  4 . 4 ~  r 1 4 . 6 ;  ( 6 )  4.25 < ;<4.75; (c )  
4.0 < ;< 5.0; ( d )  1.5 < ;< 2.5. In each case, the left-hand column, marked Data, gives the 
statistically averaged results of a large number of randomly generated samples, and the 
right-hand column, marked Theory, gives the maximum S-Xv;-distribution. In ( a )  the 
theory is worked out in the limit D = 0 (which is identical to using the Lagrange method 
of undetermined multipliers). This is because the standard deviation U, though finite, is 
small; ( b )  also gives, for comparison, corresponding estimates obtained by maximising 
S -x2, the previous statistic (Lieu 1988) which is now believed to be incorrect. 

Theory 
Data Theory Data Theory (S-x2)  Data Theory Data Theory 

PI 0.0630 0.0543 0.0650 0.0581 0.0550 0.0728 0.0677 0.409 0.436 
P2 0.0774 0.0788 0.0806 0.0826 0.0794 0.0903 0.0921 0.251 0.239 
P3 0.104 0.114 0.107 0.117 0.115 0.118 0.125 0.153 0.126 
P4 0.154 0.165 0.159 0.167 0.166 0.170 0.170 0.0939 0.0844 
Ps 0.264 0.240 0.259 0.237 0.239 0.248 0.231 0.0575 0.0635 

0.338 0.348 0.329 0.338 0.345 0.302 0.314 0.0352 0.0511 
I 4.490 4.50 4.455 4.456 4.492 4.335 4.347 2.245 2.254 
5 

In the limit ~7 + 0 the S - xZ/ r procedure can be shown to yield results in complete 
agreement with those obtained by the Lagrange method of undetermined multipliers. 
When U > 0 the validity of S - xZ/ r is demonstrated by computer simulation experi- 
ments. In a typical experiment, approximately 100 000 sets, each containing six positive 
numbers, arbitrarily adding to a total of unity, are generatedt. From this ‘universal 
set’ of dice, it is always possible to select a ‘subset’ on the sole criterion that T must 
lie within a certain interval (which defines a ‘square box’ error distribution$; the 

t The computer routine works as follows: (i) first it generates five independent random numbers (each 
between 0 and 1); (ii) then their positions are marked on the number line; (iii) between 0 and 1 these 
numbers define six intervals, the lengths of which form a required set. 
$ The fact that S - X 2 / r  can handle non-Gaussian random errors is an indication of its generality. In fact, 
it should not come as a surprise because of the central limit theorem; see earlier discussion in text. 
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standard deviation a is related to the length L of the box by U = L / m ) .  If an average 
over this subset (usually containing loo00 loaded dice) is performed, one obtains a 
‘mean set’ {pi, i = 1,2, .  . . ,6}  which should represent the most typical loaded die 
consistent with the constraint on 

Simulated data for the case L = 0.2 can be found in the left-hand column of table 
1( a). Since U is very small, S - x2 /  r is not distinguished from the Lagrange multiplier 
method, and indeed agreement between theory and data is reasonable. When U is no 
longer small, the constraints 4.25 < r<4.75 (a = 0.144) and 4.0 < T< 5.0 (a = 0.289) 
yielded data to be found in table l ( b )  and l (c) .  Here deviation from the U = 0 results 
is obvious, and S - x 2 / r  can be seen to perform well. In particular, it predicts a value 
for 9 which agrees closely with that of the typical loaded die. The fact that r<4.5 in 
both these cases is because nature has taken advantage of the error U in its affinity 
for the state of maximum entropy. More precisely, the probability distribution tends 
to uniformity as much as the error would permit, which implies that 7 shifts to the 
equilibrium value of 3.5. 

As further examples, table l (d )  shows the results, theory and experiment, of the 
case when 1.5 < i< 2.5 (a = 0.289). Again agreement between them is reasonable. 
Although the data mean value for T is 2.0, the typical loaded die has 9 closer to 3.5, 
namely ?=2.25. This is another clear example of entropy at work. Table 2 gives 
results for a 20-face die, with constraint 12.5 < i< 13.5, or 7.5 < T< 9.5. Owing to the 
large number of p i ,  only the mean values of r a re  listed. Note the value of r in S - x 2 /  r 
is now r = 20, which illustrates the scaling with degrees of freedom of the system. 
Turning now to multiple constraints, tables 3 and 4 show the simulated data, and 
theoretical best estimates of the probabilities of the loaded die, given the information 
(and associated standard errors) on two of its probabilities, i and j, i.e. pi  = a1 f U, 

pj = a2 f u2. In applying S - x’/ r to this situation, we define 

x 2 = ( p i - a 1 ) 2 / 2 u : + ( p j - a , ) ’ / 2 a :  ( 5 )  
and S = -Z p log p ,  r = number of faces as before. Table 5 shows the case when three 
of the six faces are quoted to within errors. In each of the above examples, S - x 2 /  r 
explain the average behaviour of the random samples reasonably well. Table 6 
illustrates the case of constraints with overlapping degrees of freedom. It concerns 
the maximum entropy solution, subject to information on one of the probabilities p1 
( p1 = al  f ul), and on the mean T ( ;= a2 f u2). A naive approach would maximise 

6 

S - x 2 / r =  C -pi  l 0 g p ~ - ( p , - c u , ) ~ / 1 2 u : - ( r - a ~ ) ’ / 1 2 a :  ( 6 )  
i = l  

but unfortunately it leads to a distribution which is quite unlike the simulated data. 
As mentioned before, the correct application of S - x’/ r must involve independent 

Table 2. The value ;=Pipi of the most typical 20-face die (marked 1,2, . . . , 2 0  on successive 
faces), given the constraint: ( a )  7.5< 7<9.5 (u=O.577); ( b )  11.5< r i 1 3 . 5  (u=0.577) .  
Note the tendency towards the global maximum entropy state r=  10.5. Also shown, for 
comparison, are the results of maximum S-x’ .  

Theory 
Data Theory s-x*  

(0) I 8.864 8.839 8.520 
( b )  i 12.148 12.161 12.480 

- 
- 
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Table 3. The six probabilities of the typical loaded die, given that two of its faces are 
known to within random errors of the ‘square box’ type: 0.35 < p6 < 0.65 ( u6 = 0.0866), and 
( 0 )  0.16<pl<0.24 (ul =0.0231); (6) 0.07<p1<0.17 (ul=0.0289); ( c )  0.3<p5<0.5 (al= 
0.0577). 

( 0 )  ( b )  (C) 

Data Theory Data Theory Data Theory 

PI 0.195 0.198 0.114 0.120 0.0587 0.0566 
Pz 0.0923 0.0929 0.110 0.111 0.0585 0.0566 
P3 0.0919 0.0929 0.109 0.111 0.0581 0.0566 
P4 0.0911 0.0929 0.110 0.111 0.0589 0.0566 
PS 0.0919 0.0929 0.109 0.111 0.357 0.363 

0.438 0.431 0.448 0.438 0.409 0.41 1 
i 4.106 4.083 4.335 4.296 4.824 4.845 
& 

Table 4. This table lists values of pa, pzo and ?=Lip, for the most typical 20-sided loaded 
die which satisfies the constraints 0.07<pa<0.13 (ua=0.0173), and 0.1<p20<0.2 (azo= 
0.0289). As before, errors are random, and of the ‘square box’ type. 

~~ 

Theory 
Data Theory s-x2 

Pa 0.0939 0.0952 0.0997 
p20 0.132 0.131 0.149 
i 11.197 11.209 11.373 

Table 5. The six probabilities of the typical loaded die, given that three of its faces are 
known to within random errors of the ‘square box’ type: 0.13<p4c:0.27 (u.,=0.0404), 
0.3 i p s  < 0.5 (u5 = 0.0577), and 0.35 < p6 < 0.65 (u6 = 0.0866). 

Data Theory 

PI 0.0368 0.0285 
P2 0.0368 0.0285 
P3 0.0364 0.0285 
P4 0.166 0.182 
P5 0.337 0.350 
4-6 0.387 0.383 
I 4.891 4.945 

constraints, i.e. constraints which deal with mutually exclusive sets of probabilities. 
In the present case, the correct procedure would be to decouple p 1  from ( i.e. to 
maximise 

x2 s -- = -pi log pi - ( p ,  - Q ,I2/ 1 2 a :  - (( i )  - a ) 2 /  1 2 a 2  r i = l  

where 
6 

(i) = c ipi 
i=2 

Q =a2-a,  a = (a: - a ? ) 1 ’ 2 ,  

(7)  

Agreement between theory and data is now restored (table 6). 
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Table 6. The six probabilities of the typical loaded die, given knowledge of one of its 
faces, and of the mean, as follows: 0.1 < p ,  < 0.3 (a, = 0.0577); 4.0 < I< 5.0 (U* = 0.289). 
The errors quoted are random errors, and of the ‘square box’ type. Note the correct 
procedure in applying S - x Z /  r; see text. 

Data Theory 

PI 0.151 0.160 
P2 0.0638 0.0552 
P3 0.0855 0.0872 
P4 0.127 0.138 
P s  0.223 0.217 

0.349 0.343 
i 4.256 4.223 
!!6 

In conclusion, the statistic S - x2/ r is demonstrated, via formal mathematical 
reasoning, and via computer simulation experiments, to be the central limit of any 
distribution function, which is subject to randomly varying constraints. It non-trivially 
extends the canonical meaning of entropy. In the course of its derivation, the assump- 
tion that our state of knowledge of the system fluctuates like the uncertainty principle 
was found to be inevitable. The statistic is expected to serve a growing need in the 
various disciplines of mathematical physics. 

Note added in proof: The author now understands that two papers lending much support to the application 
of S - x 2 / r  have been published by Brand and Le Caer (1988) and Zhigunov et a1 (1988). 
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